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To alleviate the problems in the receptor-based design of metalloprotein ligands due to
inadequacies in the force-field description of coordination bonds, a four-tier approach was
devised. Representative ligand-metalloprotein interaction energies are obtained by subsequent
application of (1) docking with metal-binding-guided selection of modes, (2) optimization of
the ligand-metalloprotein complex geometry by combined quantum mechanics and molecular
mechanics (QM/MM) methods, (3) conformational sampling of the complex with constrained
metal bonds by force-field-based molecular dynamics (MD), and (4) a single point QM/MM
energy calculation for the time-averaged structures. The QM/MM interaction energies are, in
a linear combination with the desolvation-characterizing changes in the solvent-accessible
surface areas, correlated with experimental data. The approach was applied to structural
correlation of published binding free energies of a diverse set of 28 hydroxamate inhibitors to
zinc-dependent matrix metalloproteinase 9 (MMP-9). Inclusion of steps 3 and 4 significantly
improved both correlation and prediction. The two descriptors explained 90% of variance in
inhibition constants of all 28 inhibitors, ranging from 0.08 to 349 nM, with the average
unassigned error of 0.318 log units. The structural and energetic information obtained from
the time-averaged MD simulation results helped understand the differences in binding modes
of related compounds.

Introduction

Metalloproteins play important roles in physiological
processes (hemoglobin, cytochrome oxidase, catalase and
superoxide dismutase), the receptor binding of potential
drugs (carbonic anhydrases, matrix metalloproteinases,
thermolysin, leucine aminopeptidase, phospolipase C,
carboxypeptidases A and B, adenosine and cytidine
deaminase), and drug metabolism (cytochromes P450
and methane monooxygenase), to give just a few
examples.1-3 In drug design, a description of the ligand
interactions with transition metals poses a challenge
due to the possibility of multi-dentate coordination
bonding that is most appropriately treated at the
quantum mechanical level.4-11 This study presents an
approach to a receptor-based estimation of binding
affinities of metalloprotein ligands that is more reliable
than standard ensemble-based techniques at the ex-
pense of a modest increase in the computing time.

The fastest and usually least precise descriptions of
coordination bonds are obtained using molecular me-
chanical approaches. Several techniques are available
with varying levels of sophistication. The nonbonded
approach12,13 uses optimized electrostatics and van der
Waals terms,14,15 occasionally using dummy cations
placed around the metal atom16,17 to enforce the correct

coordination geometry. The geometry enforcement is
more stringent in the bonded model18-20 that utilizes
the bond terms including bond stretching, angle bend-
ing, and torsional terms. These approaches require a
predefined valence of the coordinating metal, in contrast
to the directional force field YETI that is more flexible
in selection of appropriate valence.21,22 Further force-
field enhancements include addition of polarizable
bonds,23,24 directionality based on orbital hybridiza-
tion,25 and ligand field stabilization energy.26,27 Unfor-
tunately, the more sophisticated force fields are not
readily available for a routine use in modeling of
ligand-metal interactions.

Combined quantum mechanical and molecular me-
chanical (QM/MM) methods represent an economical
approach to characterization of macromolecular pro-
cesses that include changes in the covalent bond
status.28-31 The atoms directly involved in the chemical
steps are typically included in the QM region, whereas
the rest of the system is treated at the MM level.
Initially developed for gas-phase calculations,32 the QM/
MM approach was first applied to enzyme systems by
Warshel & Levitt.28 QM/MM methods combine the
efficiency of MM allowing for free energy simulations
of macromolecules, with the accuracy and a systematic
improvement potential provided by QM.33 The methods
have been implemented in combination with semiem-
pirical and ab initio molecular orbital theory and with
density functional theory (DFT). QM/MM-based molec-
ular dynamics (MD) simulations have been used for
modeling of enzymatic reactions,31,34,35 but are compu-
tationally intensive and currently impractical for the
prediction of binding affinities of a series of metallo-
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protein ligands. Alternatively, a large system as a whole
can be treated at the QM level by fragmenting, linearly
scaling approaches;36 however, the QM/MM treatment
seems to provide a better focus by applying the most
sophisticated methods to the key chemical steps and the
fast methods to the less important noncovalent pro-
cesses.

Several categories of the methods for prediction of
binding affinities to the receptors with known structures
are available. Free Energy Perturbation (FEP),37 Ther-
modynamic Integration,38 and similar techniques39 are
the most sophisticated tools for free energy calculations.
Extensive sampling resulting in extreme demands on
computational resources and limitation to close homo-
logues currently preclude their routine use in drug
design. Computational costs can be reduced by parti-
tioning of the binding energy into individual contribu-
tions and, in further simplification, by replacing the
ensembles of structures generated in molecular simula-
tions by single structures.

In ensemble-based partitioning approaches, only two
states needs to be considered: complexes and free
interaction partners. The approaches in this category
can be classified according to the use of adjustable
parameters in the final relation between the binding
affinity and the calculated free energy contributions.
The MM-PBSA40,41 and MM-GBSA42 methods form the
parameter-free category while the Linear Response (LR,
aka. Linear Interaction Energy) method,43-45 and its
extended version (ELR)46-48 represents the param-
etrized category. The contributions to the binding free
energy are expressed as the differences ∆ between the
solvated ligand in the bound and free states in the
ensemble averages (denoted by angle brackets) of re-
spective quantities.

In ELR type methods, binding free energy ∆Gb is
calculated as the linear combination of the differences
∆ in the van der Waals energies, electrostatic ener-
gies,43-45 and the solvent-accessible surface areas46-48

(SASA) obtained from MD or Monte Carlo simulations:

The adjustable parameters R, â, and γ contain the
protein-solvent and solvent-solvent interactions.49-51

The van der Waals parameter R depends on the used
force field, as was shown, for example, for throm-
bin.47,49,52 Its magnitude was analyzed with respect to
hydrophobicity of the binding site.49 The Coulombic
scaling coefficient â varies with the ligand nature and
ligand surroundings (protein or water),53-55 although its
equality to 1/2 was assumed initially based on the linear
response of the surroundings to electric fields.43-45 A
similar method for treatment of hydration of more
complex molecules56 required the use H-bond donor and
acceptor counts, in addition to the quantities present
in eq 1. Continuing studies of more diverse ligands may
reveal the need for further empirical corrections.

Single-structure-based partitioning approaches, rep-
resented by VALIDATE,57 the Free Energy Force Field
approach,58,59 COMBINE analysis,60 and a single-
structure version of the LR method using continuum
electrostatics,61 replace the ensemble averages by a
single configuration, usually obtained by a direct ge-

ometry optimization of the receptor-ligand complex.
Scoring functions are simplified single-structure-based
partitioning approaches that are categorized as force-
field-based methods,62,63 empirical free energy scoring
functions,64-66 and knowledge-based scoring func-
tions.67-69 They are mainly used in high-throughput
virtual screening, in connection with fast docking
procedures.

To overcome the limitations of the aforementioned
methods in prediction of binding affinities to metallo-
proteins due to the difficulties in handling the transition
metal atoms, we have combined docking, QM/MM
calculations, and force-field-based MD methods into a
coherent approach. The approach is tested using inhibi-
tors of matrix metalloproteinases (MMPs),70 which
belong to the most-studied metalloenzymes. Develop-
ment of MMP inhibitors is complicated by structural
relatedness of the MMP family,71 in which some mem-
bers assume normal physiological roles and others are
pathological, depending upon given concentration or
activity.

Results and Discussion
Interactions of metalloproteins with ligands are often

difficult to describe effectively due to the limited avail-
ability of appropriate force fields. To predict binding
affinities in these cases, we devised a four-tier procedure
consisting of (1) docking with the selection of poses
based upon appropriate metal binding, (2) QM/MM
optimization of the best docked geometries, (3) MD
simulation with the metal binding group of the ligand
confined in the geometry from Step 2, and (4) QM/MM
single point interaction energy calculation based on the
time-averaged structures from Step 3:

The QM/MM interaction energies are correlated in an
ELR-type approach, along with SASA crudely param-
etrizing desolvation, with experimental affinities. The
use of the energies of the time-averaged structures in
place of the ensemble averages of energies was previ-
ously shown to provide equivalent results in a param-
etrized partitioning approach to binding affinity corre-
lations72 and in protein pKa prediction.73 The approach
was tested using published data70 on inhibition of 28
hydroxamate inhibitors of MMP-9 (Table 1).

Step 1. Docking of the inhibitors to the MMP-9
structure taken from the Protein Data Bank74 (PDB file
1GKC) was performed using FlexX.64,75 The ranking of
poses was based upon the distance between catalytic
zinc and both hydroxamate oxygens in the interval 1.5-
2.5 Å as the primary criterion and the FlexX score as
the secondary criterion.76 Docking provided a greater
variety of the initial binding modes than superposition
of the ligands with the ligand in the PDB file of the
complex.77 Since the MD simulations routinely do not
sample conformations too different from the starting
conformations, this step was instrumental in selecting
the binding mode explaining the experimental data for
several compounds. To reduce the QM/MM convergence
time, for the top complexes of each ligand, the mobile
region within 5 Å of the ligand superposition was briefly

∆Gb ) R × ∆〈EvdW〉 + â × ∆〈Eel〉 + γ × ∆〈SASA〉 + κ

(1)

∆〈EQM/MM〉 ) 〈EQM/MM
complex〉 - 〈EQM/MM

ligand〉 -

〈EQM/MM
receptor〉 (2)
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Table 1. Structures, Inhibition Constants,70 and the Simulation Results of the Studied MMP-9 Inhibitors

a The LR terms for van der Waals and electrostatic energies and for the SASA change were obtained using MD simulation with explicit
solvent. b The QM/MM energy terms calculated for optimized structures after QM/MM minimization and for time-averaged structures
after MD simulation. c The SASA change for optimized structures after QM/MM minimization. d Calculated from eq 3 with optimized
values of adjustable parameters for Step 4 (Table 2, last row). e Configuration of C-3 (marked with an asterisk) is S in 2 while in other
compounds it is R.
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optimized by the conjugate gradient minimization using
OPLS-AA force field.

Step 2. QM/MM Geometry Optimization. The
charges and interatomic distances for all 28 ligands
(Table 1) do not differ much; therefore we present them
as average values in Figure 1. The maximum standard
deviations were 8.1% for charges and 2.5% for distances.
Charge transfer from hydroxamate group to zinc is
significant, albeit very similar for all studied compounds
(Figure 1). For the free/bound hydroxamates, the aver-
age bond lengths were (in Å): CdO 1.236/1.284, C-N
1.355/1.308, N-O 1.401/1.364, and O-H 0.982/1.590,
respectively. In the QM/MM geometry optimization of
the complex, the proton from the hydroxamate OH
group was transferred to the Glu402 oxygen but re-
mained H-bonded to the parent oxygen. The average
CdO, C-N and N-O bond lengths for the bound state
obtained here (1.284, 1.308 and 1.364 Å) are closer to
deprotonated Zn-coordinated hydroxamate (1.294, 1.317
and 1.378 Å) than to neutral hydroxamate with respec-
tive distances of 1.279, 1.337 and 1.416 Å.78 The distance
between Glu402 oxygen and oxygen of the reverse
hydroxamate (2.70 Å) in MMP-9 and hydroxamate
oxygen in MMP-779 and MMP-880,81 (2.6-2.8 Å) complex
are in close agreement with the distance found in Step
2 (2.604 Å). These facts suggest that bound hydroxamate
structure is, in the presence of proton-accepting Glu402,
closer to deprotonated state than to neutral form.
Hydroxamates approach the binding site as neutral
molecules (pKa g 8.9 for the studied compounds)82 and
require ionized Glu402 for full potency.83

Two hydroxamate oxygens may bind to zinc in mono-
dentate or bidentate configurations that result in 4- or
5-fold coordination, respectively. Among the structures
of hydroxamates bound to MMPs in PDB, the bidentate
zinc binding prevails, with trigonal bipyramidal (TB)
configurations occurring about six times more frequently
than the square-based pyramid (SP). After QM/MM
optimization, the bidentate TB coordination was ob-
served in the studied hydroxamate structures, as evi-
denced by the average geometries of all 28 complexes
(Figure 1). The bond lengths of the two Zn-O bonds
(Zn-O1 and Zn-O2) are 2.029 ( 0.018 Å and 2.089 (
0.012 Å, respectively, which indicates that the two
oxygens coordinate with zinc about equally. The average
bond angles O1-Zn-N in His401, His405 and His411

in these complexes are 121.77 ( 14.81°, 135.58 ( 8.95°,
and 82.06 ( 1.65°, respectively (ideal values for TB:
120°, 120°, 90°; and for SP: 90°, 180°, 90°). The average
bond angles O2-Zn-N in the same order are 101.55 (
1.89°, 95.07 ( 2.13°, and 155.23 ( 2.98°, respectively
(both TB and SP: 90°, 90°, 180°). The average bond
angle of O2-Zn-O1 is 79.66 ( 0.61°, approaching the
ideal value of 90° for both TB and SP configurations.

The QM/MM approach for the entire binding domain
provided a more realistic picture than the studies using
reduced systems5,10,78,84,85 that do not consider the
protein surroundings of bound ligands. In this case,
ionized Glu402 is crucial for a correct description of
binding. The QM/MM approach handled the zinc-ligand
charge transfer,36 bond length changes, polarization,
and ionization25 upon binding to zinc, which would be
difficult to describe by advanced force fields.21-27 Albeit
very similar in the studied set, the electronic phenom-
ena can be anticipated to play a more important role in
a heterogeneous series of ligands.

Step 3. MD Simulations. The QM/MM optimized
complexes were subjected to the MD simulation with
the constrained zinc-hydroxamate oxygens bond lengths
and angles, to obtain conformational sampling for the
rest of the complex. To reduce the computational
expense, only one MD simulation, for the enzyme-
inhibitor complex, was performed.41 The energy terms
for the enzyme and inhibitor taken from the MD
simulation for the complex were comparable to those
obtained from running separate simulations for the
enzyme and inhibitor, as checked for several inhibitors.
Inspection of the trajectories revealed that the second-
ary and tertiary structure of the ligand-receptor com-
plex remained stable during the entire 200-ps simula-
tion period (data not shown). The influence of zinc bond
constrains on movement of other ligand parts is il-
lustrated in Figure 2. The chiral carbon (Table 1) that
is only 2-3 bonds apart from the constrained hydrox-
amate oxygens is comparatively rigid. The ring nitrogen
and phosphorus are separated by 1-2 more bonds from
the constrained part and exhibit amplitudes comparable
to those of distant binding site parts such as the oxygen
of Glu402 that is H-bonded to hydroxamate oxygen. The
ensemble averages of the van der Waals and electro-
static energies that were calculated for the time-
averaged structures obtained after 5 ps simulations are

Figure 1. Average Mulliken charges and bond lengths (Å, in
italics) for the complete set of 28 hydroxamate complexes
(Table 1) after QM/MM optimization. The maximum standard
deviations were 8.1% for charges and 2.5% for distances.

Figure 2. The effect of constrained zinc binding on the MD
simulation of ligand 20 (Table 1) in the MMP-9 active site.
Distances between catalytic zinc and, from the top, phospho-
rus, ring nitrogen, and chiral carbon atoms (structures in Table
1) and between hydroxamate oxygen (O2) and Glu402 oxygen
in 10 fs intervals throughout the 5-ps MD simulation.
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listed in Table 1. Longer simulation times provided
similar samplings that did not improve the correlations
using eqs 1 and 3 and the results are not shown. The
∆SASA terms were lower for the time-averaged struc-
tures from Step 3 than for the minimized structures
from Step 2 in 16 cases (Table 1). For 12 ligands,
however, the ∆SASA terms increased, indicating that
MD sampling found better binding modes than mini-
mization. The largest increases were observed for
ligands 3, 5, 6, 8, 20, 22, 25, and 26.

Step 4. Calculation of QM/MM Interaction Ener-
gies. For the time-averaged structures resulting from
5-ps MD simulations, single point QM/MM interaction
energies were calculated according to eq 2 and are
summarized in Table 1. The time-averaged structures
were used to preserve conformational sampling obtained
in Step 3 that should result in more realistic descrip-
tions than using the single optimized structures.61 As
can be expected, the QM/MM energy changes are much
smaller for the time-averaged structures from Step 3
than for the minimized structures in Step 2. The QM/
MM calculations properly treat the coordination bonds
between zinc and the ligands. Therefore, the QM/MM
interaction energies are expected to provide better
energy estimates than the MM-based force field simula-
tions.

Correlations with Inhibitory Activities. The QM/
MM energies, along with SASA characterizing ligand
desolvation, were correlated with experimental binding
affinities using eq 3, in a way reminiscent of the ELR
approach (eq 1):

For a comparison, the MD results were correlated
with biological data using eq 1. The influence of the
SASA’s polar and nonpolar components, as well as that
of the constant term κ, was examined. The resulting
equations are not listed because they improved neither
correlations nor predictions.

The fits of eqs 1 and 3, with log Ki on the left side, to
the inhibition data for the 28 compounds for individual
Steps are summarized in Table 2. Prediction of the
MMP-9 inhibition constant based upon the linear cor-
relation of the experimental data with the FlexX scores
in Step 1 resulted in a poor correlation characterized
by r2 ) 0.044, with r being the correlation coefficient.

The QM/MM energies of the ligand-enzyme complexes
with optimized geometries, obtained in Step 2, resulted

in a slightly improved statistics (r2 ) 0.504, Table 2).
The correlation is dominated by the SASA term. Inclu-
sion of the QM/MM energy for the optimized geometry
did not improve the correlation. The pertinent regres-
sion parameter R has a negative sign and an inflated
error, possibly due to a moderate cross-correlation
between the QM/MM energy and the SASA term (r2 )
0.460).

The use of the energy terms from the MD conforma-
tional sampling in Step 3 pushed the correlation to
r2 ) 0.764 (Table 2). Compounds 3, 7, 20, 22, and 26
(Table 1) that saw the greatest description improvement
in Step 3 (0.6-1.1 log units), exhibit a significant change
in the conformation of the bound ligand upon MD
sampling. The change in the binding conformation is
accompanied by a large increase of ∆SASA, except
compound 7. Descriptions for other compounds with
∆SASA increased upon MD sampling (5, 6, 8, and 25,
Table 1) improved by 0.1-0.3 log units. For the van der
Waals coefficient R, the error is almost equal to the
parameter estimate, while for the Coulombic coefficient
â, the sign of the parameter estimate is negative and
the error term larger than the parameter estimate. This
misbehavior may be caused by the collinearity problem
of the van der Waals and electrostatic terms (r2 )
0.712-0.839 for different simulation times). The low
value of the van der Waals coefficient R might indicate
a low hydrophobicity of the MMP 9 binding site, if the
results of the original analysis49 are also valid for
correlations with the explicit SASA term. Cross-correla-
tion of van der Waals and SASA terms was very weak
(r2 ) 0.174).

The best model for Step 4 contained just the single
point QM/MM energy for the time-averaged structures
and the SASA term and was obtained using the data
from a 5-ps MD simulation. This treatment was most
beneficial for compounds 18 and 19, the residuals of
which decreased from ∼1.0 in Step 3 to ∼0.3 log units
in Step 4, and compounds 5 and 8, with residuals
improving from ∼ 0.6 to ∼0.1 log units. The correlation
for all 28 compounds is characterized by r2 ) 0.900 and
the standard deviation SD ) 0.318 reflecting a good
agreement between actual and calculated values (Table
2). For each parameter, the probability >F ratio was
<0.0001, implying that the likelihood of a random
occurrence of a significant parameter is negligible. The
cross-correlation between the QM/MM energy and SASA
is very weak as indicated by the r2 value of 0.140. The

Table 2. Correlations of Inhibitory Potencies with the Energy and SASA Terms Obtained by Different Methods for 28 MMP-9
Inhibitors (The log Ki, Ki in M, values were used instead of ∆Gb in eqs 1 and 3.)

LOOd LSOe

method step eq
R × 10-3

(mol/kcal)a
â × 10-3

(mol/kcal)b
γ × 10-3

(1/Å2)c κ r2 SD F q2 RMSE q2 RMSE

FlexXf 1 - 69.7 ( 63.71 - - -5.831 ( 1.997 0.044 0.966 1.198 -0.079 0.989 -1.110 0.994
QM/MM
minimization

2 3 -0.420 ( 1.190 - 12.30 ( 3.12 -3.744 ( 0.966 0.504 0.709 12.72 0.380 0.750 -0.457 0.808

QM/MM
minimization

2 3 - - 11.55 ( 2.26 -3.606 ( 0.870 0.502 0.697 26.21 0.423 0.723 -0.278 0.751

MD 3 1 11.25 ( 10.50 -4.090 ( 6.010 8.380 ( 1.240 -4.315 ( 0.551 0.764 0.499 25.96 0.566 0.627 0.180 0.662
MD 3 1 4.630 ( 4.060 - 8.680 ( 1.150 -4.137 ( 0.478 0.760 0.494 39.55 0.602 0.600 0.272 0.629
MD 3 1 - - 9.230 ( 1.105 4.399 ( 0.422 0.747 0.496 76.91 0.717 0.506 0.442 0.531
QM/MM 4 3 3.592 ( 0.580 - 7.543 ( 0.727 -2.623 ( 0.394 0.900 0.318 112.8 0.879 0.331 0.769 0.319

a Characterizes QM/MM interaction energy (eq 3) or van der Waals energy (eq 1). b Characterizes electrostatic energy (eq 1 only).
c Characterizes the solvent accessible surface area (eqs 1 and 3). d Leave-one-out cross-validation. e Leave-several-out cross-validation:
random selection of six-member test set, repeated 200 times. f The correlation between logKi and the FlexX scores, with the slope R and
the intercept κ.

∆Gb ) R × ∆〈EQM/MM〉 + γ × ∆〈SASA〉 + κ (3)
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dominance of the SASA terms, clearly seen in Table 2,
is probably reflecting the effect of burial of the inhibitor
in the binding site. This phenomenon was described
previously in the analysis of binding energies of several
ligand-protein complexes.86 A plot of experimental activ-
ity as a linear combination of contributions from QM/
MM energy and SASA is shown in Figure 3. The quality
of correlations in Step 4 remained at about the same
level with the increase in the MD simulation time for
obtaining the time-averaged structures. Consequently,
the simulation time of 5 ps seems to be sufficient for
the binding energy analyses in the studied case, which
is characteristic by constrained geometry of the zinc
binding group in the complex and rigid protein structure
outside the 5-Å region around the ligand superposition.

The adjustable parameter κ in eq 3 yields an attrac-
tive term of about -2.623 log units (Table 2), providing
a base value for the inhibitors that is then modulated
by the QM/MM interaction and SASA terms. The values
of the QM/MM terms (Table 1) are negative and the
associated positive coefficient (Table 2) implies that a
strong interaction between the inhibitor and the binding
site is important for inhibition. The SASA terms (Table
1) are negative, implying burial of the surface area upon
binding. The associated parameter γ (Table 2) is positive
so that the removal of mostly hydrophobic surface area
from the contact with water upon binding promotes the
binding, which simply reflects the hydrophobic effect.87

The obtained values of γ (Table 2: 0.00754-0.011 Å-2;
multiplied by R × T × ln 10 ) 1.419 kcal/mol to account
for the change of the dependent variable from free
energy to log Ki as described in part Methods/Data Set)
are in the same range as the slopes of the linear
dependencies of solvation free energies on SASA: 0.007
kcal/(mol × Å2) for alkanes,88 and 0.01689 or 0.020 kcal/
(mol × Å2)46 for various compounds.

The robustness of the regression equations and their
predictive abilities were probed by cross-validation. The
leave-one-out (LOO) procedure and especially the leave-
several-out (LSO) procedure with a random selection of
six-member test set that was repeated 200 times
provided a thorough evaluation. The predictive root-
mean-squared error (RMSE) for Eq 3 obtained for the
5 ps MD simulation time is the lowest among all
correlations. The RMSE values using LOO (0.331) and
LSO (0.319) were comparable to that of the RMSE of
the whole data set (0.318). Inclusion of all Steps in the

correlation was warranted by the improvement in
descriptive and predictive ability. The quality of cor-
relations for individual Steps is documented in Figure
4.

The correlation described by eq 3 with the optimized
parameters given in Table 2 is much better than our
previous ELR results77 obtained from MD simulations
with nonbonded zinc-ligand interactions. The predictive
ability of the ELR model for all 28 compounds was
characterized by RMSE from LSO cross-validation
between 0.584 and 1.173, depending upon the simula-
tion time (Table 6, model A in ref 77). Comparison of
these values with equivalent LSO RMSE values in the
right-most column of Table 2 shows that current cor-
relations were significantly better only for Step 4 (RMSE
0.319), where single-point QM/MM energies of the time-
averaged structures were used. The results from MD
simulations employing the same time-averaged struc-
tures (Step 3), although run with improved starting
geometries of hydroxamate groups from the QM/MM
minimization in Step 2, did not show any major
progress: the best RMSE was 0.531 that is only slightly
better than 0.584 resulting from a less constrained MD
simulation. The QM/MM energy from the minimization
procedure (Step 2) ended with the best RMSE of 0.751
that is not much better than RMSE of 0.785 that was
obtained previously with a force-field minimization.
Apparently, conformational sampling embodied in the
time-averaged structures (Step 3) and a good description
of the zinc coordination bonds (Step 4) are jointly
required for a good correlation with experimental in-
hibitory potencies and none of these procedures alone
is making a major breakthrough.

Binding Trends. Equation 3 and underlying struc-
tural information on bound ligands present a straight-
forward framework for understanding the trends in the
observed activities. For a given series of hydroxamate
derivatives in Table 1, the ranges for the contributions
from QM/MM interactions and burial of solvent acces-
sible surface area are 451.81 kcal/mol and 305.97 Å2,
respectively. The SASA term contributes more to the
computed activities than the QM/MM term. Represen-

Figure 3. Experimental inhibition constants Ki (M) of hy-
droxamates (Table 1) vs MMP-9 as a linear combination of
the change in the SASA (Å2) caused by binding and the QM/
MM interaction energy (kcal/mol) for the time-averaged struc-
tures obtained by MD simulation.

Figure 4. Correlations between experimental and calculated
inhibition potencies of hydroxamates vs MMP-9 as obtained
by FlexX docking with the zinc-binding-based selection of
modes in Step 1 (green), QM/MM minimization in Step 2
(blue), MD simulation with constrained zinc bonds in Step 3
(red), and by QM/MM energy calculations for the time-
averaged structures from MD simulation in Step 4 (black). All
correlation results are summarized in Table 2.
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tative binding modes of compound 22 (Table 1) obtained
after FlexX docking, minimization, and MD simulation
are illustrated in Figure 5. The differences between
minimized structures and time-averaged structures
after MD sampling in Step 3 were sometimes larger
than those shown in Figure 5, especially for compounds
3, 7, 20, and 26 (Table 1). The S1 subsite is structurally
defined by Asp185, Gly186, Leu187, Leu188, Ala189,
His190, Ala191, and Phe192, while the S2′ subsite is
defined by Ala417, Leu418, Met419, Tyr420, Pro421,
Met422, and Tyr423. The PdO group of all the ligands
except 2, 3, 13, 16, 20, and 25 forms hydrogen bonds
with the backbone NH of Leu188. In general, the R1
substituents occupy the pocket lined with residues of
the S1 subsite while R2 substituents occupy the S2′
subsite (Figure 6). Even compounds with longer R2
substituents (compounds 18-22) leave an empty pocket
in the S2′ subsite. Since these are the most potent
compounds in the given series, further lengthening of
the R2 substituents may be helpful in designing more
potent inhibitors.

The Effect of Stereoisomerism. Compound 1 is a
potent inhibitor (Ki ) 5.05 nM) while compound 2
exhibits only moderate activity (Ki ) 349 nM). The
compounds are structurally similar except the config-
uration on C-3 where 1 exhibits the R-configuration
while in 2 it is the S-configuration. The importance of
the R-configuration at the R carbon is well docu-
mented.90-94 Binding modes after MD simulation (Step
3) of the two inhibitors are shown in Figure 7. The zinc-
binding group is tightly bound to zinc in both the
compounds but the rest of the ligand is flipped by 180°.
In case of 1, several hydrogen bonds can be discerned:
between the oxygen atom of the ethyl ester group and
the main chain NH of Leu188; between the hydrox-
amate OH and oxygen of Glu402 (and also an intramo-
lecular H-bond with the phosphonamide oxygen). In
contrast, compound 2 forms only one hydrogen bond
with the Glu402 (Figure 7). The H-bond pattern is
reflected in computed QM/MM interaction terms (Table
1) that are equal to -698.95 kcal/mol for 1 and -489.14

kcal/mol for 2. Additional benefit for 1 comes from the
burial of more SASA (-389.34 Å2) than for 2 (-311.53
Å2).

The Role of 4-Methoxyphenyl in R2 Position.
Substitution of 4-methoxyphenyl in the R2 position in
1 with pyridine ring in 15 resulted in a severe loss of
activity. The fact can be explained by the lower QM/
MM energy values as well as a lower burial of SASA in
15 as compared to 1 (Table 1). Compounds 10-12
(Ki ) 42.7, 41.8, and 51.9 nM, respectively) are struc-
tural analogues of compound 1 but exhibit lower activity
as compared to 1 (Ki ) 5.05 nM). The 4-methoxyphenyl
group in R2 position of 1 is replaced with phenyl (10),
4-methylphenyl (11), and 4-fluorophenyl (12) substitu-
ents. Compounds 10-12 exhibit less burial of SASA and
similar (11) or lower QM/MM energy values (10 and 12),
as compared to 1 (Table 1).

Interactions vs SASA Burial. Compound 19 (R2 )
Ph-Ph) differs from 20 (R2 ) Ph-O-Ph) in the inter-
linking oxygen atom and exhibits a lower activity. The
ether linkage in 20 is expected to be better solvated in
the unbound state of the ligand than in the bound state.
However, this factor is not encoded in the overall
∆SASA value: greater ∆SASA (-604.77 Å2) of 20 than
19 (-423.94 Å2) merely reflects the size difference as
both ligands bind in a similar way. Although the QM/
MM energy term is more favorable for 19 (-940.95 kcal/
mol) than for 20 (-834.28 kcal/mol), this contribution
is negated by the dominance of the SASA term and
consequently higher activity for compound 20.

Compounds 20 and 21 differ in isosteric R2 substit-
uents (Ph-O-Ph and Ph-O-C6H5N, respectively). The
QM/MM as well as SASA terms are more favorable for
compound 20 as compared to compound 21 (Table 1).

Figure 5. The binding modes of compound 22 (Table 1) in
active site of MMP-9 obtained from FlexX docking (green), QM/
MM optimization (blue), and MD simulation (red). The R1 and
R2 substituents bind in S1 and S2′ subsites, respectively. The
time-averaged protein surface after MD simulation (Step 3)
is shown in white for clarity. The imidazole rings of His401,
His405, and His411, as well as catalytic zinc were included in
creating the surface but are also shown in corresponding colors.
The surface of the protein was z-clipped for better view.

Figure 6. The binding modes of compounds with longer R1

(compounds 4-9) and R2 (18-22) substituents (Table 1) shown
in ball-and-stick mode. Compounds with smaller R1 and R2

substituents follow a similar pattern. The catalytic zinc is
represented as sphere. The empty pocket of the S2′ subsite,
created with the SiteID module of Sybyl,96 is represented by
transparent green space fill. The residues of the S2′ and S1
subsites as well as residues surrounding the empty pocket for
compound 4 are shown in atom color in the capped stick mode.
All structures are time-averaged structures from MD simula-
tion (Step 3).
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For compound 20, MD simulation in Step 3 found a new
time-averaged binding mode resulting in a substantial
increase in ∆SASA that explains higher activity of 20
as compared to 21. In this mode, the PdO group of 20
forms H-bond interaction with backbone NH of Ala189
that was not observed after QM/MM minimization in
Step 2.

MD simulation also found a new time-averaged bind-
ing mode for compound 26, resulting in a significant
increase in ∆SASA and improvement in description of
activity after Step 3 as compared to Step 2. A closer look
at the structural changes shows that the new mode also
exhibits a different H- bonding interaction pattern: the
PdO group forms H-bond with backbone NH of Leu188,
while after Step 2 the NH group in X4 was H-bonded
with the backbone CdO group of Gly186.

Methods
Data Set. Published inhibitory potencies, characterized by

the inhibition constants Ki at 37 °C, of a series of 28 hydrox-
amate derivatives70 toward MMP-9 were used (Table 1). The
inhibition constants are the inverse values of the association
constants K. The left sides of eqs 1 and 3 are the binding free
energies ∆Gb ) -R × T × ln K ) R × T × ln 10 × log Ki. The
log Ki values were used as dependent variables, to work with
the dependent variables that are most common in medicinal
chemistry. The optimized values of adjustable parameters R,
â, γ, and κ (Table 2) can be recalculated for the ∆Gb as
independent variable by multiplication with R × T × ln 10 )
1.419 kcal/mol.

Coordinates of the MMP-9 catalytic domain were taken from
the recently reported X-ray crystal structure of the MMP-9 in
the complex with N-formyl-N-hydroxy-2-(2-methylpropyl)-â-
alanyl-N,3-dimethyl-L-valinamide, a ‘reverse hydroxamate’
inhibitor, as deposited in the PDB (file 1GKC).95

Construction of Initial Inhibitor/Enzyme Complexes.
Three-dimensional structures of ligands were constructed
using the SYBYL6.9 suite of programs96 running under Irix
6.5. Full geometry optimization and charges were calculated
using DFT/B3LYP-6-31G** approach.97 The inhibitors were
docked into the active site of MMP-9 using the FlexX program
that considers ligand conformational flexibility by an incre-
mental fragment placing technique.64,75 For each ligand, the
best conformation in the active site was selected from the top
30 poses generated by FlexX using the distances in the interval
1.5-2.5 Å between both hydroxamate oxygens and the cata-
lytic zinc atom as the primary criterion and the FlexX ranking

as the secondary criterion.76 Step 1 was completed by a brief
MM geometry optimization using the OPLS-AA force field with
a distance-dependent dielectrics and conjugate gradient algo-
rithm with a convergence criterion of 0.001 kcal/(mol × Å).

QM/MM calculations98 were used for three purposes:
optimization of the initial geometries of the inhibitor-enzyme
complexes and estimation of their interaction energies (Step
2), as well as estimation of the interaction energies for the
time-averaged structures (Step 4) obtained by MD simulation
(Step 3). The QM region consisted of side chains of His405 and
His411, the backbone atoms and side chains of His401 and
Glu402, the entire inhibitor, and the zinc ion. The backbone
atoms were included to obtain valid QM/MM cuts. The rest of
the protein was treated with MM. The protein and water
outside 5 Å of the ligand superposition after Step 1 were frozen.

The interface between QM and MM regions is mediated by
frozen orbitals.99 The QM and MM regions interact via two
mechanisms: electrostatic interactions between MM point
charges and the QM wave function, and van der Waals
interactions between QM and MM atoms. For the MM and
QM parts of the QM/MM calculations, OPLS-AA force field100

and DFT functional B3LYP101 were deployed, respectively. All
charges in the MM region were treated using the OPLS-AA
force field. The 6-31G* basis set was used in the interface
region between the QM and MM regions. The LAV3P** basis
set was employed for geometry optimization: for Zn, S and P
atoms, this means the Los Alamos effective core potential
(ECP)102,103 with all the s functions and the last p and d
Gaussian uncontracted; for the remaining atoms, it implies
6-31G** basis set. The maximum number of iterations was
set to 100 cycles and all calculations converged before reaching
this limit: the root-mean-squared change in density matrix
elements was less than the criterion of 5.0 × 10-6. B3LYP
provides as good or better geometries and energies as those
from correlated ab initio methods for the first-row transition
metal complexes.5 We therefore selected B3LYP to optimize
the structures of the complexes in Step 2. In Step 4, the
interaction energies were calculated by subtracting the QM/
MM energy of the ligand and the receptor from the QM/MM
energy of the complex for the time-averaged structures (eq 2).

Molecular dynamics simulations were performed using
SYBYL 6.9 under isothermal/isobaric (NPT) conditions with
Tripos force field.104 The QM/MM-optimized bonds between the
zinc-binding group (hydroxamate oxygens) of inhibitors, zinc
and nitrogens of His401, His405, and His411, slightly different
for each ligand, were restrained with a harmonic potential (the
force constant 200, power 2) throughout the simulation. The
Mulliken charges105 resulting from the QM/MM optimization
were used for the QM region (ligand, catalytic zinc, coordinat-
ing histidine and glutamate residues). For the rest of the

Figure 7. Stereoview of the binding modes and key interactions of isomers 1 (atom color) and 2 (purple) in MMP-9 active site
(time-averaged structures after the Step 3). Compound 1 forms hydrogen bonds with Leu188 and Glu402, while compound 2
engages in hydrogen bond with Glu402 only. The hydrogen bonds are shown in dashed lines (magenta). Structures of isomers are
shown in Table 1.
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protein and water, Gasteiger-Hückel charges106 were used. For
each system, only one set of simulations was performed with
the ligand bound to the protein with a cap comprising two
layers of water (TIP3P) molecules,104 surrounding the complex.
The water molecules were then minimized for 10,000 cycles
using conjugate gradient minimization keeping the protein and
ligand atom fixed to its initial positions. The outer portion of
the water cap was farther than 5 Å from the ligand superposi-
tion after Step 2 and was assigned to the frozen region.
Subsequently MD simulation was performed for 20 ps for the
mobile water molecules, keeping the protein, ligand, and
crystal water and frozen water fixed. This solvent equilibration
phase was performed in order for the solvent molecule to
readjust to the potential field of the ligand-receptor complex.

After the 15-ps heating phase, when the temperature of the
system was raised from 0 to 300 K, the equilibration run was
performed for 100 ps. Finally, the production phase was carried
out at 300 K for 200 ps. The time step of the simulations was
1 fs with a cutoff of 12 Å for nonbonded interactions. The
nonbonded pairs were updated every 25 fs. All residues within
5 Å of any atom in the ligand superposition after Step 2 were
allowed to move freely and the remaining part of the protein
and water was kept frozen. This setting was identical for all
ligands. The time-averaged structures, obtained from the
readings in 100 fs intervals, of the complete mobile region were
collected at appropriate times. These structures were briefly
minimized, to relieve the worst conflicts, using the Tripos force
field with a distance-dependent dielectrics and the Powell
conjugate gradient algorithm with a convergence criterion of
0.001 kcal/(mol × Å). The minimization produces structures
with standard bond length and angles, with the dihedrals
representing the ensemble. The time-averaged structures were
shown to provide similar LIE correlations as ensemble aver-
ages.72,73 The single-point QM/MM energy calculations on the
time-averaged structures were used to estimate the zinc
binding energies. The polar, nonpolar and total solvent acces-
sible surface area (SASA) terms were calculated using the
ProsSat option in the Homology module of the Insight II
modeling package.107

Regression and Cross-Validation. The least-squares
fits108 were based on Eqs 1 and 3 with the constant term. The
robustness of the regression equations and their predictive
abilities were probed by cross-validation. For this purpose, the
fits to the potency data are generated leaving out one or more
inhibitors from the calibration process. The resulting equation
for each fit is used to predict the potencies of the omitted
compounds. We used the leave-one-out (LOO) approach and
the leave-several-out (LSO) approach, where 6 inhibitors were
randomly omitted and the process was repeated 200 times.
The correlations of the LOO and LSO predictions with the
actual potencies were characterized by the root-mean-square
errors (RMSE).

Conclusions

A computational approach combining docking, QM/
MM calculations, and MD simulations was developed
for prediction of binding affinities of ligands to metal-
loproteins. The use of QM/MM energies in the ELR-type
correlations was facilitated by the use of time-averaged
structures from MD simulations. The application of the
approach to the MMP-9 inhibition by 28 hydroxamates
resulted in an excellent correlation (r2 ) 0.900) between
experimental and calculated values for all tested com-
pounds that exhibit ∼4000-fold difference in binding
affinity, with the inhibition constants Ki ranging from
0.08 to 349 nM. Prediction ability of the correlation is
characterized by RMSE ∼ 0.3 for the log Ki values, as
compared to RMSE > 0.6 if the QM/MM term is not
used. The examination of the energetic and structural
results provides a basis for understanding activity
differences of individual inhibitors and for their rational

design. The proposed approach improves the descriptive
and predictive abilities for metalloprotein ligand affinity
prediction as compared to the LR approach at the
expense of about a 4-fold increase in the computational
time.
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